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LIMITATIONS ON THE APPLICABILITY OF HIGH-EXPLOSIVE CHARGES

FOR SIMULATING NUCLEAR AIRBLAST

D. Book: D. Fyfe, M. Picone, Naval Research Laboratory,

Washington, D.C.

M. Fry, Science Applications, Inc., McLean, Virginia

The flow fields that result- from nuciear and high
explosive (HE) detonations are qualitativsly alike but
quantitively different. Consequently, care must be exercised

in carrying over conclusions drawn from measurements of HE
tests to nuclear explosions. The usefulnesb of HE explosions
for simulating nuclear airblast is predicated on the fact
that after reaching 5-6 times the initial radius the flow
field looks like that produced by a point source and produces
shock overpressures similar to those in the nuclear case.
Numerical simulations of airblast phenomena have been carried

out using one- and two-fluid Flux-Corrected _ransport hydro-
codes in one and two dimansions. The prin'.ipal differences
in the free-field solutions are the presence in the HE case

of a contact discontinuity between air and HE products and of
a backward-facing shock behind it. Temperatures in the

nuclear fireball are initially three orders of magnitude
higher; correspondingly, the density minimum at the center of

. the fireball is much broader and deeper. When the blast wave
in a nuclear height-of-burst (HOB) situation undergoes

regular reflection from the ground only one peak develops in
_- . the overpressure, and the reflected wave propagates upward

"rapidly through the hot underdense fireball. In the HE case
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part of the upward-moving reflected wave is reflected

downward at the contact surface, producing a second pressure

peak on the ground, while the shock transmitted through the

contact surface propagates slowly upward. After transition

to Mach reflection other differences appear. At late times

following shock breakaway the nuclear fireball, unlike the HE J

fireball, appears to develop a Rayleigh-Taylor instability

along its lower edge below the HOB. The vortices (both

forward and reverse) are stronger and form earlier. This has

important consequences for fireball rise and for dust

entrainment and transport to high altitudes.

Section 1 •

INTRODUCTION "

In this paper we describe a series of calculations

carried out as part of the ongoing NRL effort aimed at study-

ing airblast effects. The phenomena of chief interest to us

include the following: peak overpressures and pressure

histories on the around as functions of yield, range, and
height of burst (HOB), both at early times (prior to and

during transition to Mach reflection) and at late times

(after shock breakaway, with peak pressure in the range of

tens of psi); velocity fields, particularly those associated

with the toruses (both forward and reverse) in the neighbor-'

hood of the rising fireball; and the distribution of dust

lifted off the ground by the winds and the structure of the

cloud at the time of stabilization. We are interested in

comparing the nuclear and HE cases, and learning how much

they differ from one another. Our motivation is to determine

the extent to which HE tests can simulate events in a nuclear
height-of-burst situation.
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The technique we have employed for this purpose is
numerical modeling. One- and two-fluid hydrocodes based on
the Flux-Corrected Transport (FCT) shock-capturing techni-
ques 1 have been used to simulate airblast phenomena in one
and two dimensions. FCT refers to a class of state-of-the-

art fluid computational algorithms developed at NRL in the
course of the past ten years with supersonic gas-dynamic

A •applications expressly in mind. Simply put, our procedure is
"to model a one-kton nuclear burst and its 600-ton chemical

] .equivalent, both at a HOB of 50 m, and compare the results.
In order to validate, initialize, and interpret these 2D
simulations, a number of ancillary calculations (mostly ID)

were undertaken. The results are most conveniently exhibited
in terms of plots of peak overpressure vs range and time,
station histories, contour plots of combustion product and
total density, velocity vector plots, and tracer particle

trajectories. Examples of these are presented to illustrate
our results and conclusions.

'-ne plan of the paper is as follows: In the next
section we discuss our numerical techniques and validation1
procedu..es. In Section 3 we discuss the free-field (iD)
solution and indicate the salient differences between nuclear
and HE cases. Section 4 describes the 2D HOB calculations

done for the HE and nuclear cases. In Section 5 we summarize
our conclusions and discuss their domain of validity. We
find that siaulation of nuclear explosions by HE has distinct

limitations, particularly at early times, in the fireball and
transition regions, and in the details of the dust scouring

process.
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Section 2

NUMERICAL TREATMENT

£CT is a finite-difference technique for solving
the fluid equations in problems where sharp discontinuities

arise (e.g., shocks, slip surfaces and contact surfaces). 1

It modifies the linear properties of a second- (or higher-)
order algorithm by adding a Jiffusion term during convective
transport, and then subtracting it out "almost everywhere" in
tne antidiffusion phase of each time step, The residual
diffusion is just large enough to prevent dispersive ripples
from arising at the discontinuity, thus ensaring that all
conserved quantities remain positive. FCT captures shocks
accurately over a wide range of parameters. No information
about the number cr nature of the surfaces of discontinuity
need be provided prior to initiating the calculation.

The FCT routine used in the present calculations,
called JPBFCT (an advanced version of ETBFCT) 2 , consists of a
flexible, general transport module which solves 1-D fluid
equations in Cartesian, cylindrical, or spherical geometry.

It provides a finite-difference approximation to conservation
laws in the general form:

f I dV =-f o(u-u )*dA + f -rdA, (1)
6V(t) 6A(t a--u e 6a(t)

where * represents the mass, momentum, energy or mass species " -

in cell 6V(t), u and _Ug represent the fluid and grid velo--.

cities, respectively, and T represents the pressure/work

terms. This formulation allows the grid to slide with
respect to the fluid without introducing any additional

V7.!
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numerical diffusion. Thus, knowing where the features of
greatest interest are located, one can concentrate fine zones
where they will resolve these features most effectively as

the system evolves,

The same transport routine is employed in the 2D
r-z code (called FAST2D) via coordinate splitting. A Jones-
Wilkins-Lee (JWL) equation of state (EOS) was used for the
rletonation products and a real-air EOS was used outside the
HE-air interface. 3 The routine was written in the form of a

table lookup, using interpolation with logarithms to the base

16 computed by means of logical shifts. 4  By thus taking

account of the architecture of the machine (in these calcula-

tions, a 32-bit-word two-pipe Texas Instruments ASC) it was

possible to generate very efficient vector code, decreasing
the time required for EOS calculations to a small fraction of

that required for the hydro. The EOS specifies pressure as a
function of density and internal energy. In mixed cells the

combined pressure was calculated according to Dalton's law.

For the HE calculations the initial conditions were

taken to be the self-similar flow field corresponding to a
spherical Chapman-Jouguet detonation at the time the detona-
tion wave reaches the charge radius (Fig. 1)3. This was

propagated with the ID spherical code until the detonation
front attained a radius just smaller than the HOB, at which

time the solution was laid down on the 2D mesh (Fig. 2). The
nuclear calculation was initialized with the 1-kton standards

with the same initial radius.

The boundary conditions were chosen to enforce
perfect reflection on the ground and on the axis of symmetry

5
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t n
[(d4/d 0, where • = p,pv , and Vb = 0], where "t" and

"n'4 denote tangenti.al and normal components, respectively,

and outflow on the outer and the top boundaries [(dý/dn)b =

0, where • = p,p,vt,vn].

For the 2D calculations the mesh was typically

-100 x 100. Fixed gridding was used to minimize numerical

errors. These zones were 2.1 m x 2.1 m. For the late time

calculations, a fixed mesh with 100 zones in the radial and

200 zones in the vertical ditection was used, with all cells

of dimension 4.2 m x 4.2 m.

Section 3

FREE-FIELD SOLUTION

The well-known Sedov similarity solution6 for a

point blast consists of a strong shock (post-shock pressure

much larger than ambient pressure) followed by a rarefaction

wave (Fig. 3). The density distribution is extremely concave

and approaches zero at the origin. The pressure approaches a

constant as r * 0, so that the temperature diverges strongly.

The profiles of the 1-kton standard solution (Fig. 4) are

qualitatively similar, the temperature being essentially flat

in the fireball region.

The solution used to initialize the HE problem,

however, contains a number of features which are absent in

the other solutions. These are most conspicuous in the
* density profile (Fig. 2), which exhibits a contact discon-

tinuity between the HE products and shocked air, a secondary

,==
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shock facing inward within the detonation products, and a

gentle maximum near the origin. Because of this last

feature, temperatures are about three orders of magnitude

smaller in the fireball than in the nuclear case, and are

noiwhere divergent.

It follows that the speed of sound in the nuclear

fireball is much greater than in the HE fireball. This has .4

two immediate consequences, one physical and one numerical.
.-

The first is that shocks propagating through the nuclear
fireball travel much faster. The second ia that the upper

limit on the computational timestep, set by the Courant

criterion

max (Jvt+c t) < 1, (2)

which usually is determined by conditions in the fireball, is

much smaller relative to the shock time scale T

HOB/vhk in the nuclear case than in the HE case.

As a result, even though the leading shock is well

resolved (over - 2 zones) in the free-field solution, the

process of reflection even at ground zero (where the shock is

incident normally) takes hundreds of timesteps. Coupled with
the property of FCT (known as "clipping") which makes the

points of all sharply-peaked profiles tend to flatten out

until they are > 3 zones across, this makes the rise time of

the reflected shock quantities - 10 times longer than that of
the incident shock. This can be seen using a 1D spherical

model calculation (Fig. 4), as well as in oblique reflection

in 2D. This spreading is a problem only while the shock is

in the immediate vicinity of the reflecting boundary, After

10
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the reflected shock has propagated a few zones back into the

interior of the mesh, the profiles steepen up and assume
their correct forms (this has been shown by rerunning the

calculation with a refined mesh and comparing the peak values
after reflection with those predicted theoretically).

When the reflected shock begins propagating back to
the origin it encounters drastically different conditions in
the HE and nuclear cases. In the former, it strikes the

contact discontinuity where it is partly transmitted and
partly reflected. The reflecced shock then proceeds outward

until it reaches the ground (the end of the grid in the iD

calculation), producing the second peak in the station
history shown in Fig. 5. In contrast, the shock wave

reflected from the ground passes unhindered through the
fireball at high speed until it reaches the upper boundary of

the f-rpball whereupon it reflects back.

As we shall show, it is primarily through these
reverberating shock waves and the wind pattern they set up
that the HE and nuclear HOB airblasts differ.

Section 4
2D SIMULATION OF AIRBLAST

The yield and HOB (600 tons and 166 ft, respec-

tively) were chosen to equal the values used in the Direct

:.. Course experiment, which we are simulating. The Chapman-
Jouguet parameters used to initialize the spherical free-

field calculation were taken to be those for the NH NO3-fuel

4t4

-"['•oil (ANFO) mixture used as the explosive.

:,,•'•11



Figures 6(a)-(c) show the contours of HE density

and internal energy per unit mass and the velocity arrow plot

at t=0, just. before the reflection at ground zero occurs.

Figures 6(d)-(f) show the corresponding plots 54 ms later,

while Figs. 6(g)-(i) show them after 245 ms. Note the

reflected shock proceeding upward, reflecting again off the

fireball, and propagating back in a downward and outward

direction. The interaction of this shock with the radially

inward flow near the ground generates the reverse vortex,

"which is clearly seen in Fig. 6(i). Note also the positive

vortex forming near the top of the grid in the same plot.

The latter results when the upw,.rd'.propagating reflected

shock interacts with the radially outward flow near the top

of the fireball; it is not produced by the buoyant rise of

the fireball, which at these early times has scarcely begun.

To look at the evolution of the fireball at late

times, we reinitialized on a larger, coarser grid, represent-

ing a cylinder 400 m in radius and 800 m high. The first 300

cycles approximately reproduce the early-time results. The

spherical shock breaks away and leaves the mesh. The flows

remaining on the grid are now subsonic everywhere. Then the

fireball begins to rise and the subsequent development is due

to the combination of buoyant rise and the action of the

vortices set up by the early shocks.

Figures 7(a)-(b) show the reaction product density

and velocities at 0.93 s. Note the "toe" reaching out along

the ground and the bulge near the bottom of the HE product

density produced by the constructive interference of forward
and reverse vortices. These features are accentuated with

the passage of time; in Figs. 7(c)-(d) (t = 2.70 s), they are

12
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even clearer. The cloud has become quite elongated verti-

cally and shows a distinct mushroom shape. Development slows

as the fireball cools and velocities diminish. By 7.34 s

(after 2600 timesteps) the cloud is almost at 600 m. Figures

7(e)-(f) show its form at this time. Note that the maximum

velocity is now 145 m/s.

Figure 8a, we.ich shows the trajectories of

passively advected tracet particles over the time interval

1.8 sec to 3.97 sec, displays the vortices very clearly.

Figure 8b shows the particle paths for the time interval 3.97-,

sec to 7.34 sec. Notice that there are four vortices visible

in the plot: two positive and two reversed. The additional

small vortices are apparently a consequence of entrainment by

the major ones. As far as we know, their axistence has not

been noted previously.

When we repeat the calculation with nuclear initial

conditions, several differences appear at a very early stage.

The reflected shock propagates upward rapidly through the

much hotter tireball and reverberates more. The maximum flow

speeds (as opposed to sound speeds) are smaller, a difference

which persists to late times. Although the shock radius as a

function of time is essentially the same, the rarefaction

wave moves faster as the deeper density well gets filled in.

Figures 9(a)-(c) show plots analogous to those of

Figures 6(g)-(i); by this time it is clear that much of the

early difference in the density profiles is washed out as

press-:e begins to relax to ambient. (The pressure differs

from ambient by < 5% everywhere, so that pressure contour

plots are not very informative.) Note, however, the indenta-

tions that appear on the underside of the internal energy

17
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contoucs at the base of the stem [Fig. 9(b)]. These are

absent in the corresponding HE plot, Fig. 6(g). We conjec-

K' ture that they are the signature of a fluid instability,
possible Rayleigh-Taylor. The idea is that the air sucked in

bý the (forward) vortex at the bottom of the fireball is much
denser than the fireball itself. In running into the latter

41• it sets up the classic condition for Rayleigh-Taylor insta-
bility (direction of effective gravity and density gradient

e are opposed).

-t is clear that the major qualitative differences

between the HE and nuclear cases persist longest in the
velocity plots. This is not surprising, as the circulationhi•. patterna represented by the vortices have essentially

"infinite lifetimes in the absence of viscosity. We have run
both nuclear and HE cases out to stabilization (not shown

here) and have shown that there are qualitative differences

"in velocity plots to the very end. At all times t>0 the peak
-flow velocity in the HE ccse exceeds that in the comparable

nuclear result. This is a reflection of the fact that the

Chapman-Jouguet solution at a radius of 10 m has a pressure
peak of 52 kbar, vs 3 kbar for the 1-kton standard at the

same radius. The means that the former starts out with much
more violent motion, i.e., fluid velocities an order of

magnitude larger. In point of fact, the HE case does not

closely resemble a point source. At initialization the

nuclear profiles have - 6% of the yield in kinetic energy.

This fraction increases to a maximum of - 15%, then
decreases. In the HE case the fraction is initially about

one-half and decreases monotonically thereafter at about the
same r,,e as in the nuclear case.
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Section 5

CONCLUSIONS

We have described numeri.-al simulations carried out

for a 600-ton HE burst and a 1-kton nuclear burst, both at

166 ft. The code, gridding, and method of solution are the

same in the two calculations. Although the shock waves in

the two cases propagate at roughly the same speed and break

away at roughly the same time, and although the pressure

fields relax to ambient in similar fashion, we find signifi-

cant differences, of which the following appear to be the

most important.

(i) The HE flow velocities are systematically

"' larger.

(ii) In the regular reflection region (underneath

and close to the fireball), the HE case

exhibits two overpressure peaks at the

surface1 rather th.n one, due to re-reflec-

tion of the reflected shock from the contact

surface between air and detonation products.

(iii) For the HE case the upp.r vortex forms first,

followed by the reverse vortex near the axis

of symmetry and the ground. Adjacent HE

products begin to be entrained into a

positive vortex over a longer period of time,

several seconds. In the nuclear case the

negative vortex is the dominant one; it is

larger then the HE, persists longer, and
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contains larger velocities than the positive

vortex at comparable times.

(iv) The HE flow establishes a pattern of four

vortices, two forward and two reversed,

instead of one of each.

(v) The stem of tle nuclear fireball appears to

exhibit a Rayleigh-Taylor instability, absent

in the HE case.

Since the velocities on axis are higher in the HE
case (the upper positive vortex is larger), fireball rise is

faster than in the nuclear case. The nuclear case, however,

probably scours up more dust because the velocities are

larger, and the reverse vortex is larger and more persistent.

It is difficult to argue conclusively on this point because
so much depends on terrain, conditions in the Loundary layer,

and other physical effects not included in this rodel (e.g.,
precursor heating and turbulence). Further study of the

tracer particle motions we have calculated is expected to be

l...LI.*.a.t,-ig 4n this regard.
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